AP[®] CHEMISTRY 2014 SCORING GUIDELINES

Ouestion 5 (4 points)

Nonmetal	С	N	0	Ne	Si	Р	S	Ar
Formula of Compound	CF ₄	NF ₃	OF ₂	No compound	SiF ₄	PF ₃	SF ₂	No compound

Some binary compounds that form between fluorine and various nonmetals are listed in the table above. A student examines the data in the table and poses the following hypothesis: the number of F atoms that will bond to a nonmetal is always equal to 8 minus the number of valence electrons in the nonmetal atom.

(a) Based on the student's hypothesis, what should be the formula of the compound that forms between chlorine and fluorine?

|--|

(b) In an attempt to verify the hypothesis, the student researches the fluoride compounds of the other halogens and finds the formula ClF₃. In the box below, draw a complete Lewis electron-dot diagram for a molecule of ClF₃.

See diagram above.	1 point is earned for a central Cl atom surrounded by three bonding pairs with F atoms and two nonbonding (lone) pairs of electrons. F atoms must have three nonbonding pairs each. Electron pairs can be depicted as dots or line segments.
--------------------	---

AP[®] CHEMISTRY 2014 SCORING GUIDELINES

Question 5 (continued)

(c) Two possible geometric shapes for the ClF_3 molecule are trigonal planar and T-shaped. The student does some research and learns that the molecule has a dipole moment. Which of the two shapes is consistent with the fact that the ClF_3 molecule has a dipole moment? Justify your answer in terms of bond polarity and molecular structure.

The molecule is T-shaped	
because a T-shaped structure is asymmetric with dipoles that do not cancel out, but produce a net dipole (i.e., a polar molecule). OR because, if the molecule had a trigonal planar structure, the molecule would be symmetric with dipoles that cancel out and produce a net dipole of zero (i.e., a nonpolar molecule), which is not consistent with the observation that the ClF ₃ molecule does have a dipole moment.	1 point is earned for indicating that the molecule is T-shaped with an acceptable explanation.

In an attempt to resolve the existence of the ClF_3 molecule with the hypothesis stated above, the student researches the compounds that form between halogens and fluorine, and assembles the following list.

Halogen	Formula(s)	
F	F ₂	
Cl		
Br	BrF, BrF_3, BrF_5	
Ι	IF, IF_3 , IF_5 , IF_7	

(d) Based on concepts of atomic structure and periodicity, propose a modification to the student's previous hypothesis to account for the compounds that form between halogens and fluorine.

An acceptable hypothesis (descriptive or formulaic) must include the following ideas:
1. Atomic Structure: e.g., odd number of F atoms
2. Periodicity: e.g., as the atomic number of the central halogen atom increases, the number of F atoms increases.
1 point is earned for an acceptably modified hypothesis that addresses both atomic structure and periodicity.